用户
 找回密码
 立即注册
搜索

admin缩小放大

2016-3-13 20:59

通用人工智能,一次撕裂历史的断层

寻找未来:Demis Hassabis 摄影:David Ellis


1
通用人工智能——野心勃勃的目标


Demis Hassabis举止温和,面容谦逊,而当他告诉我他正在为「破解智能难题,然后用其来解决一切问题」的使命而奋斗时又格外认真。其他任何人说出这句话,听起来都十分可笑,但这句话从他的口中说出就另当别论了。39岁的Hassabis是一位前国际象棋大师、游戏设计员,他的人工智能研究创业公司DeepMind在2014年被谷歌以6.25亿美元收购。


大部分人工智能系统应用范围都很「窄」,训练预设程序的机器去执行特定任务,除此之外再没什么了。因此,IBM的深蓝能在国际象棋比赛中击败Gary Kasparov,但却在井字游戏中输给三岁孩童。而Hassabis正在把他从人脑中得到的启发用于构建首个「通用学习机器」:一套能像生物系统一样学习的灵活、自适应的算法,仅使用原始数据就能从头开始掌握任何任务


它就是通用人工智能(artificial general intelligence ,简称AGI),它的重点落于「通用」上在Hassabis眼中,未来超级智能机器将与人类专家合作解决一切问题。「癌症、气候变迁、能源、基因组学、宏观经济学、金融系统、物理学等,太多我们想掌握的系统知识正变得极其复杂。」Hassabis指出:「如此巨大的信息量让最聪明的人穷其一生也无法完全掌握。那么,我们如何才能从如此庞大的数据量中筛选出正确的见解呢?而一种通用人工智能思维的方式则是自动将非结构化信息转换为可使用知识的过程。我们所研究的东西可能是针对任何问题的元解决方法(meta-solution)。」 

2
这将是一次撕裂历史的断层


虽然寻找「元解决方法」也许要花费数十年时间,但它看起来正在迫近。2015年2月,世界顶级科学期刊《自然》将像素游戏《Space Invaders》作为其封面,右下角是「自我教学软件在玩游戏上达到了人类般的表现」。在这一期,DeepMind的论文描述了首个成功的通用「端对端」学习系统,他们的人工代理——一个针对于图像处理单元的Deep-Q网络算法——能够学习如何处理屏幕的输入值并理解其含义,并采取能实现所需结果的决策(在这种情况下,系统成为众多雅达利2600经典游戏,如太空侵略者、拳击、打砖块中的超级玩家)。这是一项让整个科技界都为之震撼的突破。



接着,DeepMind又占领了《自然》封面——在短期内获得如此成就非常惊人。这一次,它变本加厉的挑战上世纪70和80年代的复古游戏。围棋在中国有着超过2500年的历史,曾经出现在孔夫子笔下。围棋的分支系数非常大:每一颗棋子可能的走法数量超过了整个宇宙的原子数量,而且不像国际象棋,它无法用蛮力计算来得出结果。更加困难的是,想要写出围棋的评估函数是一件不可能的事,例如能够体现出谁处于优势位置以及优势多少的一套规则。反而,它取决于棋手的一些类似于「直觉」的东西:当被问到为何这样落子的时候,大师们通常的回答是「感觉如此」。

很显然,计算机在做出这方面的判断时会表现很糟,围棋也因此被认为是人工智能领域「悬而未决的重大挑战」之一,大部分研究者预期还需要十年机器才能有希望破解它。

DeepMind的新算法有着严格的同行评审证据,AlphaGo在去年秋季秘密的一场对决中以5:0击败了曾三次获得欧洲冠军的樊麾,并在今年三月与世界冠军李世石对决。「令人瞠目结舌的进步」,帝国理工学院认知机器人学教授Murray Shanahan如此形容。「一个了不起的里程碑」,超人类主义哲学家Nick Bostrom也表示同意,后者写出的《 Superintelligence: Paths, Dangers, Strategies 》指出:如果通用人工智能可以出现,这将是一个无法比肩的事件——借用下谷歌工程主管Ray Kurzweil的话:这将是一次撕裂历史的断层。Bostrom告诉我在他牛津人类未来研究所的办公室中,AlphaGo的成就被认为「将过去几年间机器学习所取得的进步生动的表现了出来」。

欧洲冠军、职业围棋二段樊麾被AlphaGo击败


「这非常酷。」Hassabis很平淡的说到,我们在他的办公室讨论着最新的胜利。像平常一样,他穿着没有任何特点的黑色上衣、裤子和鞋子:实在难以想象这实习生装扮的家伙拿到了谷歌的8000万英镑。「围棋是一个终极目标:它是一个游戏的巅峰,有着最丰富的智力深度。它如此迷人与美丽,令我们感到兴奋不仅在于我们掌握了这个游戏,还在于我们还用漂亮的算法完成了它。」


围棋游戏更像是艺术而非科学,他认为:「AlphaGo以十分人类的方式下围棋,因为它是以人类的方式进行学习,通过不停地游戏变得更加聪明,就像你我一样。」Hassabis也许看起来像学生,但他更像一个骄傲的家长,AlphaGo是他职业生涯中所达到的最令人激动的成就。「比任何人所想象的都高了一个数量级,」他有些激动,「但对于我们来说,最好的在于这不是一个使用人工规则的专家系统。它借助于通用机器学习技术教会了自己如何掌握游戏。最终,我们想将这些技术用于重要的真实世界的问题,例如气候模型或者复杂的疾病分析,对吧?想想它下一步能够解决的问题真的非常令人激动!」


Demis Hassabis(DeepMind CEO)关于人工智能的演讲


来源:机器之心(节选)

喜欢
喜欢